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Q'Nial	is	an	interpreter	that	implements	Nial,	the	Nested	Interactive	Array	Language,	
designed	by	Michael	Jenkins	and	Trenchard	More	in	the	early	1980s.	This	document	gives	an	
overview	of	the	design	and	implementation	of		Version	7	of	Q'Nial.	This	version	is	intended	
primarily	for	the	execution	of	scripts	that	are	written	in	Nial	in	a	Unix	environment.	A	simple	
interactive	interface	is	provided	for	debugging	and	testing	purposes.	The	document	describes	
the	overall	design	at	a	high	level,	provides	notes	on	individual	modules	and	explains	how	the	
implementation	can	be	extended	by	adding	interfaces	to	other	software.	The	software	is	
being	release	on	GitHub	as	open	source	software.	
	
	
1.	Overview	
	
Nial	is	a	very	high	level	language	intended	for	solving	problems	in	both	numeric	and	symbolic	
domains.	It	is	based	on	nested	array	data	structures	as	the	sole	data	handling	mechanism.	The	
interpreter	supports	a	workspace	concept	in	which	Nial	data	and	function	definitions	are	
stored.	
	
The	interpreter	analyzes	program	text	written	in	Nial	notation	producing	an	internal	form	(a	
parse	tree)	that	is	either	executed	immediately	or	stored	for	later	execution.	Thus,	the	
interpreter	naturally	divides	into	a	front	end	that	does	the	analysis	and	an	evaluator	that	
executes	the	internal	form.		
	
The	evaluator	itself	is	further	subdivided	into	a	layer	that	implements	an	abstract	array	
machine,	and	a	layer	that	implements	the	semantics	of	the	language	constructs.	The	abstract	
machine	provides	support	for	the	nested	array	objects,	with	a	heap	mechanism	for	storage	of	
the	objects,	a	stack	for	holding	references	to	the	objects	during	evaluation,	an	object	table	for	
uniquely	storing	symbolic	data	types	and	a	buffer	mechanism	used	to	store	C	values	during	
object	creation.	
	
The	"instructions"	of	the	abstract	machine	are	stack	based.	The	top	of	the	stack	holds	the	
array	that	is	the	argument	to	a	primitive	operation	and	the	result	of	the	operation	is	left	on	
the	stack.	The	main	task	of	the	evaluator	is	to	walk	the	parse	tree	of	the	internal	form	of	Nial	
code,	invoking	primitive	operations	to	achieve	the	work	of	the	program.	
	
The	following	sections	discuss	the	structure	of	the	intepreter	in	terms	of	the	above	partition	
of	its	functionality	with	more	detail	provided	on	each	piece	of	the	system.	
	
	



2.	The	Abstract	Machine	
	
	
The	Nial	abstract	machine	is	implemented	as	five	main	components:	
	 -	memory	management	of	array	objects	in	the	heap	
	 -	array	creation	with	routines	to	fetch	and	store	items	
	 -	a	stack	of	array	values	
	 -	an	object	table	for	unique	storage	of	phrases	and	faults	
	 -	routines	to	manage	a	heap	object	as	a	buffer	of	C	values	
	
The	predefined	functional	and	data	objects	of	the	language	are	constructed	using	the	
capabilities	of	these	components.	The	files	absmach.c	and	absmach.h	implement	the	
components.	
	
	
2.1	The	Heap	
	
The	Nial	heap	is	a	C	array	mem[],	that	is	dynamically	allocated	on	startup.	Its	use	as	a	heap	
implemented	by	the	following	memory	management	routines:	
	 -	reserve(n),	which	reserves	space	for	an	array	object	needing		n	words	of	storage,	and	
	 -	release(x),	which	releases	the	heap	block	at	offset	x.	
	
The	heap	blocks	are	allocated	on	a	first	fit	basis,	with	the	free	list	maintained	using	a	doubly	
linked	list.	Tags	are	kept	at	both	ends	of	a	free	area	so	that	adjacent	free	blocks	can	be	merged	
on	the	freeing	of	a	block	without	searching	the	free	list.	
	
The	heap	is	allocated	as	an	array	of	words	of	defined	type	nialint,	set	as	32	or	64	bit	integers	
depending	on	a	compiler	switch.	References	to	arrays	within	the	heap	are	given	as	an	index	
into	the	heap	array	stored	as	a	nialint.	Cross-references	from	one	array	to	another	also	use	
nialint	indices.	
	
A	heap	entry	never	moves	when	viewed	as	an	index	value;	however,	during	heap	expansion,	
the	actual	address	of	an	array	can	change	because	of	entire	heap	moves.	Thus,	care	has	to	be	
taken	not	to	hold	an	actual	C	address	across	a	call	that	can	result	in	heap	expansion.	
	
Because	of	Nial's	scope	rules,	whereby	most	variables	are	automatically	made	local,	the	heap	
gets	used	largely	in	a	stack	like	fashion.	As	a	result	the	number	of	free	areas	remains	small	
and	most	of	the	free	space	is	in	one	block.	Some	operations	can	result	in	temporary	
fragmentation,	but	once	the	results	are	consumed,	fragmentation	reduces	dramatically.	No	
compaction	algorithm	is	needed	to	maintain	the	heap	because	of	this	property	of	Nial	usage.	
	
	



2.2	Array	Representation	
	
All	data	objects	in	Nial	are	arrays	and	are	stored	in	the	heap.	An	array	has	the	following	
properties:	
	 -	valence,	the	number	of	axes	(equivalent	to	rank	in	APL	or	dimensionality	in	linear		 		
	 	 algebra)	
	 -	shape,	an	array	of	nialints	giving	the	lengths	along	each	axis	
	 -	tally,	a	nialint	that	is	the	number	of	items	in	the	array,	equal	to	the	product	of	the		
	 	 shape	
	 -	kind,	the	storage	kind	for	the	items	of	the	array	
	 -	data,	the	list	of	items	of	the	array.	
	
The	heap	is	viewed	as	a	sequence	of	blocks	that	are	either	allocated	or	free.		An	allocated	
block	has	the	following	format:	
	
 +------+--------+----------------------+-------+---------+---+--------------+ 
 | size | refcnt | sortflg,kind,valence | tally | data ...| U | shape vector | 
 +------+--------+----------------------+-------+---------+---+--------------+ 
 ^                                              ^ 
 |                                              | 
 block address                                  array address 
 

where U represents	some	unused	space	if	the	block	is	larger	than	needed.	When	the	block	is	
free	it	has	the	form:	
 
 +-----+---------+---------+---------+-----+-----------+ 
 |size | FREETAG | fwdlink | bcklink | ... | -(hdrptr) | 
 +-----+---------+---------+---------+-----+-----------+ 
 ^ 
 | 
 block address 
 

Memory	management	uses	the	block address	in	its	tasks,	whereas	the	evaluator	use	the	
array address	to	reference	the	array	the	block	contains.	The	two	addresses	relate	by		
	

block address + hdrsize	= array address 
	
Using	different	values	for	these	two	purposes	reduces	the	amount	of	index	arithmetic	needed	
on	each	reference	to	an	item	of	an	array.	
	
The	same	heap	design	is	used	for	both	32-bit	and	64-bit	implementations	of	Q’Nial	but	is	
paramterized	to	allow	for	the	different	word	size.	Both	versions	use	64-bit	double	precision	
numbers	for	real	number	values.	In	the	32-bit	version	the	block	header	size	is	an	even	
number	of	nialints	to	ensure	that	the	array	reference	is	an	even	integer.	This	avoids	alignment	
problems	on	architectures	that	required	double	precision	numbers	to	be	aligned	on	double	
word	boundaries.	
	



The	tally	field	in	the	header	is	redundant,	it	could	be	computed	from	the	shape.	It	is	included	
because	it	reduces	overhead	in	many	routines	and	can	take	advantage	of	the	space	needed	to	
ensure	alignment	of	the	array	pointer.		
	
Both	the	block	and	array	addresses	are	even	integer	indices	for	the	heap	array.		Within	the	
header,	the	third	word	packs	in	the	valence,	the	storage	kind	and	a	flag	indicating	whether	the	
array	is	in	lexical	order.	The	latter	permits	a	speedup	on	certain	array	theory	operations.	
	
In	the	data	field,	the	data	is	packed,	either	consisting	of	actual	data	stored	as	bits,	bytes,	
words,	double	words,	or	as	integer	indices	to	other	heap	entries.	The	storage	kinds	
correspond	to	the	six	atomic	types	plus	"atype"	which	corresponds	to	a	simple	array	of	mixed	
type,	an	array	of	depth	two	or	more,	or	an	empty	array.	
	
The	shape	is	attached	at	the	end	to	avoid	having	to	step	over	a	varying	sized	field	to	get	to	the	
array	address	from	the	block	address.	
	
Any	array,	atom	or	otherwise,	can	be	represented	in	this	layout.	For	an	atomic	array,	the	
storage	kind	is	its	atomic	type	and	the	valence	is	zero.	A	homogeneous	simple	array	has	
storage	kind	corresponding	to	the	type	of	atoms	that	it	holds,	but	the	data	is	packed.	Simple	
arrays	containing	just	phrases	or	just	faults	are	not	stored	as	packed	because	the	items	vary	
in	representation	size.	Instead	they	are	stored	as	"atype".	
	
The	macros	that	refer	to	array	properties	use	the	array	address,	the	ones	that	refer	to	
memory	management	use	the	block	address.	
	
The	heap	management	is	done	with	a	doubly	linked	list	of	free	areas.	A	free	block	can	be	
detected	from	either	end.	From	the	front	of	a	block,	the	refcnt	field	of	the	header	is	-1	for	a	
free	block	or	>=0	for	an	allocated	array.	From	the	end	of	a	block,	the	last	word	is	a	negative	
number	whose	absolute	value	is	the	index	for	the	block	(its	block	address)	for	a	free	block,	or	
the	last	word	of	the	shape	for	an	allocated	array.	For	an	array	with	no	axes	(a	single,	all	
atoms),	the	last	word	must	be	a	zero	to	mark	that	it	is	allocated.		
	
All	arrays	are	created	using	the	routine:	
	
	 new_create_array(k,t,n,&sh)	
	
where		
	 	 k	 storage	kind	
	 	 t	 tally	
	 	 n	 length	(for	a	phrase	or	fault	only)	
	 	 &sh	 the	address	of	a	C	array	holding	the	shape		
	
Array	creation	is	also	supported	using	the	routines:	
	 creatbool(b)	
	 createint(i)	
	 createreal(r)	



	 createchar(c)	
	 makephrase(s)	
	 makefault(s)	
	 mkstring(Cstr)	
	 mknstring(Cstr,n)	
	
The	routine	freeit(x)	is	used	to	free	an	array	block	when	it	is	no	longer	used.	The	macros	
freeup(x)	checks	if	the	reference	count	is	zero	and	if	so	calls	freeit.	
	
The	array	blocks	are	managed	with	reference	counts.	When	new_create_array	creates	a	new	
array	block	the	reference	count	is	set	to	zero.	The	reference	count	is	incremented	if	
	 -	the	array	is	pushed	on	the	stack	
	 -	the	array	is	associated	with	a	Nial	variable	
	 -	the	array	becomes	the	item	of	another	array	
	 -	the	array	is	recorded	in	the	atom	table	(phrase	or	fault)	
	 -	the	array	is	permanently	associated	with	a	global	C	variable	
	
It	is	decremented	if	
	 -	the	array	is	popped	from	the	stack	
	 -	the	array	is	replaced	as	the	value	of	a	Nial	variable	
	 -	the	array	is	replaced	or	removed	as	the	item	of	an	array	
	 -	the	array	is	removed	from	the	atom	table.	
	
An	array	is	considered	temporary	if	its	reference	count	is	zero.	In	order	to	protect	an	array	
needed	temporarily,	it	is	pushed	on	the	stack.	This	approach,	rather	than	incrementing	the	
reference	count	directly,	allows	a	cleanup	if	the	execution	long	jumps	to	top	level	before	
decreasing	the	reference	count	since	such	a	jump	will	trigger	a	cleanup	of	the	stack.	If	this	
approach	was	not	used,	arrays	allocated	in	intermediate	routines	called	between	the	set	point	
and	the	jumped	point	would	not	get	cleaned	up.	
	
	
2.3	The	Stack	
	
The	Nial	stack	is	used	only	to	hold	references	to	arrays	held	in	the	heap	store	in	the	C	array	
mem[	].	It	is	used	for	arguments	and	results	of	both	primitive	and	user	defined	operations	and	
to	hold	values	temporarily.	Each	array	reference	is	an	integer	that	is	an	index	into	the	heap.	
	
The	stack	is	stored	in	a	heap	array.	It	is	accessed	by	the	macros:	
	
	 apush(x)	 pushes	x	onto	the	stack	
	 x	=	apop()	 pops	x	from	the	stack	
	 swap()		 swaps	top	two	items	of	the	stack	
	 top	 	 top	element	on	the	stack	
	 topstack	 the	index	to	the	top	stack	item,	-1	if	the	stack	is	empty	
	 growstack()	 used	to	grow	the	stack	when	it	is	full.	
	 	



The	stack	automatically	expands	if	an	apush	occurs	when	it	is	full.	
	
In	debug	mode,	which	can	be	set	up	for	testing	purposes	using	the	build	process,	the	apush	
and	apop	routines	are	replaced	by	routines	that	check	the	validity	of	items	being	pushed	or	
popped.	
	
	
2.4	The	Atom	Table	
	
The	atom	table	is	used	as	an	"object"	table	to	ensure	that	phrases	and	faults	are	stored	
uniquely.	This	means	that	comparisons	between	phrases	can	be	done	by	integer	comparison,	
speeding	up	computations	involving	symbolic	searches.	A	hash	function	is	used	to	compute	
the	location	for	a	phrase	or	fault,	with	rehashing	used	if	collisions	occur.	
	
The	atom	table	is	an	array	of	integers,	atomtbl[	]	that	holds	either	references	to	the	storage	of	
a	phrase	or	fault	atom	in	the	heap	or	tags	indicating	empty	or	held	positions	in	the	hash	table.	
Its	length	is	chosen	so	that	it	is	relatively	prime	to	239,	the	value	used	in	the	rehashing	
computation.	
	
Since	an	atom	has	a	reference	count	if	it	is	held	in	the	atom	table,	the	free	up	routine	removes	
phrases	or	faults	from	atomtbl	if	their	reference	count	is	one.	
	
The	combination	of	sharing	of	phrase	values	via	the	atom	table	along	with	the	above	
approach	to	reference	counting	has	one	subtle	problem.	If	there	is	a	situation	where	two	
temporary	values	can	exist	that	point	to	the	same	phrase,	then	the	only	reference	count	will	
be	caused	by	the	atom	table.	If	an	attempt	is	made	to	free	both	temporary	values,	then	the	
second	one	will	fail.	This	problem	has	been	circumvented	in	eval_fun.c	and	eval.c	in	calls	to	
binary	and	curried	operations	by		pushing	the	arguments.	It	is	believed	this	is	the	only	
circumstance	where	the	above	situation	can	occur.	In	all	other	cases,	phrases	being	passed	
will	be	items	of	array	structures	and	will	have	an	extra	reference	count.	
	
The	routines	that	support	the	atom	able	are:	
	 -	createatom(k,s)		 create	an	atom	of	kind	k	from	string	s	
	 -	remove_atom(x)	 remove	an	entry	from	the	atom	table	
	 -	hash(s)	 	 hash	the	string	s	
	 -	reshash(n)	 	 rebuild	the	expanded	hash	table	of	size	n	
	 	
The	routines	makephrase	and	makefault	use	createatom.	The	makefault	routine	is	used	to	
trigger	an	interrupt	on	fault	creation	if	the	triggering	switch	is	on.	
	
	
2.5	The	C	Buffer	
	
Many	of	the	implementation	routines	for	primitives	need	to	hold	data	as	a	set	of	C	values	
before	constructing	a	Nial	array	in	the	heap.	The	variable	Cbuffer	is	a	character	array	



allocated	in	the	Nial	heap	used	to	hold	temporary	C	values	during	array	construction.	Some	
routines	use	this	in	a	stack	like	way,	while	others	use	it	to	accumulate	a	string	of	indefinite	
length.	In	order	to	use	it	efficiently	both	ways	there	is	a	reserve	protocol	by	which	enough	
space	is	allocated	so	that	items	can	be	pushed	without	the	need	to	check	for	available	space.	
	
The	routines	to	support	the	Cbuffer	are:	
	 -	allocate_Cbuffer()	 	 allocates	it	
	 -	extendCbuffer()	 	 extends	Cbuffer	if	reserve	needs	it.	
	 -	reservechars(n)	 	 reserve	space	for	n	chars	
	 -	copytoCbuffer()	 	 copies	a	string	to	Cbuffer	
	 -	copyfromCbuffer()	 	 copies	a	string	from	Cbuffer	
	
	
3.	The	Layer	of	Primitives	
	
The	majority	of	predefined	functionality	in	the	interpreter	is	provided	by	expressions,	
operations	and	transformers	that	are	implemented	directly	in	terms	of	the	abstract	machine.	
These	are	grouped	into	a	number	of	files	of	related	implementations.	
	
The	details	of	the	abstract	machine	capabilities	are	abstracted	by	macros	so	that	the	
programming	does	not	explicitly	manipulate	the	array	representation.	The	use	of	macros	
allows	changes	in	the	array	representation	to	be	made	with	only	minor	impact	on	the	rest	of	
the	code.		
	
Each	routine	that	implements	a	primitive	is	called	a	"basic"	routine	and	can	be	considered	to	
be	an	instruction	to	the	abstract	machine.	Each	such	routine	is	named	by	preceding	its	Nial	
name	by	i,	e.g.	the	basic	routine	for	the	Nial	operation	sum	is	isum.	(Since	these	routines	are	
all	visible	to	the	linker,	a	more	distinctive	naming	convention	such	as	NC_sum,	would	reduce	
the	likelihood	of	name	collision	in	uses	of	the	code	that	require	linking	in	other	software.)		
	
For	operations	that	are	defined	to	be	"binary",	e.g.	expect	a	pair	as	the	argument,	there	is	also	
a	routine	beginning	with	b_	,	e.g.	b_plus,	to	provide	efficient	calling	of	binary	operations.	
	
The	general	form	of	a	basic	routine	is:	
	
void	i<name>()		
		{	
						<	code	to	compute	the	result	>	
						apush(	<result>	)	
					<	cleanup	code	>	
		}			
	
For	a	basic	expression,	there	is	no	argument	on	the	stack;	for	a	basic	
operation	the	stack	contains	the	argument;	for	a	basic	transformer	routine	
the	stack	contains	both	the	function	argument	and	the	array	argument.	
	



The	following	code	is	the	code	for	the	Nial	operation	first	from	the	file	atops.c.	
	
/* implements first 
   Rules: 
     atomic A => first A = A 
     nonempty A => first A = 0 pick list A 
     otherwise, first A = ??address 
*/      
 
void 
ifirst() 
{ 
  nialptr     x, 
              z; 
  x = apop(); 
  if (atomic(x)) 
    z = x; 
  else if (tally(x) > 0) 
    z = fetchasarray(x, 0); 
  else 
    z = makefault("?address"); 
  apush(z); 
  freeup(x); 
}	
	
The	first	action	of	the	routine	is	to	pop	the	argument	into	variable	x,	and	then	to	use	it	for	the	
atomic	test	and	the	nonempty	test.	In	both	cases	the	result	is	placed	in	variable	z	and	pushed	
on	the	stack.	Then	cleanup	is	done	by	calling	freeup	on	the	argument.	
	
If	the	argument	is	a	temporary	array	(refcnt	=	0)	then	it	is	freed	immediately;	otherwise,	the	
call	to	freeup	has	no	effect.	The	call	to	freeup	must	be	done	after	the	call	to	apush	because	the	
result	may	be	the	same	array	as	the	argument.	
	
Operations	that	are	more	complex	are	often	programmed	in	two	layers:	the	basic	routine,	
beginning	with	i,	is	used	to	pop	the	argument	into	a	C	variable.	Checks	on	the	validity	of	the	
argument	may	be	done	at	this	level.	Then	a	C	routine	taking	an	argument	is	called.	Usually,	
the	latter	routine	will	push	the	result	and	clean	up	the	argument	and	temporaries.	The	
support	routine	may	also	be	called	from	other	places	in	the	code.	
	
See	ipack	in	atops.c	for	an	example.	
	
For	operations	that	are	binary,	there	are	two	basic	routines:	an	"i"	routine	that	assumes	the	
argument	is	a	pair	(and	checks	that	this	is	true)	and	a	"b_"	routine	that	takes	two	arguments	
off	the	stack.	Both	of	these	call	the	same	support	routine	to	do	the	work.	
	
The	basic	routines	are	in	a	number	of	files:	
	

arith.c			 -	arithmetic	operations,	random	number	generator	
atops.c		 -	array	theory	operations		



compare.c	 -	comparison	primitives,	max,	min	
linalg.c	 -	the	linear	algebra	operations	
logicops.c	 -	the	boolean	operations	
picture.c	 -	the	array	diagramming	operations	
wsmanage.c	 -	the	workspace	management	operations	

	
	
Routines	that	support	basic	Nial	expressions,	such	as	Null,	Pi,		Readchar,	etc.	are	very	similar	
to	the	basic	Nial	operation	routines	except	that	there	is	no	argument	to	pop	off	the	stack.	
	
These	routines	are	not	gathered	in	one	file,	but	appear	in	the	modules	to	which	they	are	most	
closely	related.	For	example,	ireadchar()	is	in	fileio.c	with	the	code	for	reading	a	single	
character	from	the	standard	input	stream.	
	
Routines	that	support	basic	Nial	transformers	are	also	similar	to	operation	routines	except	
that	there	is	also	an	operation	argument	passed	on	the	stack.	For	example,	the	following	code	
implements	the	transformer	FOLD.	
	
/* implements the transformer FOLD as 
    n FOLD f x   ==   f f f...f x  (n applications) */ 
 
void 
ifold() 
{ 
  nialptr     f, 
              z, 
              x, 
              y; 
  nialint     n, 
              i; 
 
  f = apop(); 
  if (kind(top) == faulttype && top != Nullexpr && 
      top != Eoffault && top != Zenith && top != Nadir) 
    return; 
  z = apop(); 
  if (tally(z) != 2) 
  { 
    apush(makefault("?argument to a FOLD transform must be a pair")); 
  } 
  else 
  { 
    splitfb(z, &x, &y); 
    if (kind(x) != inttype || valence(x) != 0) 
    { 
      apush(makefault("?first argument of FOLD must be an integer")); 
      freeup(x); 
      freeup(y);                  /* in case they are temporary */ 
    } 
    else 



    { 
      n = intval(x); 
      freeup(x); 
      apush(y); 
      for (i = 0; i < n; i++) 
        apply(f); 
    } 
  } 
  freeup(z); 
}	
	
The	routine	begins	by	popping	the	operation	to	be	applied	into	f.	This	is	a	reference	to	the	
array	holding	the	parse	tree	associated	with	the	actual	operation	being	transformed.	
	
Then	the	array	argument	is	popped	after	testing	whether	it	is	a	fault.	It	is	checked	to	have	two	
items	which	are	split	into	x	and	y.	The	variable	x	is	tested	to	be	an	atomic	integer	array	and	its	
integer	value	placed	in	n.		
	
The	work	of	the	routine	is	done	by	pushing	y	and	then	using	a	for-loop	that	applies	the	
operation		f		n	times,	leaving	the	final	result	on	the	stack.	
	
Before	exit,	the	array	argument	is	freed.	The	function	argument	is	not	freed	because	in	most	
cases	it	will	be	permanent.	If	the	function	argument	is	temporary	it	is	freed	by	
apply_transform()	in	eval.c.	
	
	
4.	The	Translator	to	Internal	Form	
	
The	front	end	of	the	Nial	interpreter	consists	of	a	hand-built	scanner	and	a	hybrid	parser.	
Because	Nial	definitions	are	usually	fairly	small,	the	decision	was	made	to	decouple	the	
scanner	and	parser	into	separate	passes;	thus	the	scanner	is	given	a	string	to	scan	and	
produces	a	token	stream.	The	latter	is	a	flat	array	of	alternating	numbers	and	phrases	where	
the	numbers	indicate	the	type	of	token	and	the	phrase	contains	the	text	of	the	token.	The	
parser	takes	a	token	stream	as	its	argument	and	produces	a	nested	array	representing	a	
reduced	parse	tree	as	the	result.	
	
	
4.1	The	Scanner	
	
The	module	scan.c	implements	the	scanner.	The	scanner	is	driven	by	a	finite	state	automaton	
consisting	of	a	character	class	table	and	a	state	transition	table.	The	scanner	is	quite	efficient;	
the	only	drawback	to	this	approach	is	that	adding	new	"special	symbols"	such	as	":="	requires	
carefully	addition	to	the	transition	table	layout.	
	
The	scanning	process	works	as	follows.	The	scanner	starts	in	Start	state.	The	class	of	the	next	
character	is	found	and	the	transition	table	is	used	to	select	a	new	state	as	indicated	by	the	
[Start,class]	entry.	This	process	is	repeated	until	the	state	becomes	Accept	state.	Then	the	



string	isolated	between	the	Start	and	Accept	state	is	selected	and	the	routine	mktoken()	is	
called	to	construct	the	token	and	add	it	to	the	stream.	The	macro	definitions	for	the	state	
names,	the	character	classes	and	the	token	numbers	are	defined	in	the	file	states.h.	
	
The	basic	Nial	operation	scan	can	call	the	scanner	directly	within	Nial.	
	
	
4.2	The	Parser	
	
The	module	parse.c	implements	the	parser	as	a	hybrid	of	a	top-down	recursive-descent	
parser	for	the	linguistic	aspects	of	the	grammar	(control	constructs,	assignment,	operation	
and	transformer	forms,	etc.)	and	a	bottom	up	shift-reduce	parser	for	the	juxtapositional	
syntax	of	array	theory	expressions.	This	design	was	chosen	because	of	the	ease	of	adding	
reasonable	error	messages	for	the	linguistic	parts.	The	use	of	the	hand	built	shift-reduce	
component	allows	very	general	use	of	parentheses,	which	were	difficult	to	achieve	in	a	pure	
recursive-descent	version.	
	
The	parser	is	also	unusual	because	it	does	back	up	to	undo	some	parsing	steps	in	situations	
where	the	construct	cannot	be	recognized	from	the	next	token.	This	backup	has	to	be	done	
carefully,	otherwise	a	situation	can	arise	where	n!	attempts	are	made	to	parse	a	strand	of	
length	n	before	it	fails.	(We	learned	about	this	the	hard	way!).	
	
The	parser	is	called	in	two	modes:	one	in	which	it	is	expecting	an	action	and	one	when	it	can	
parse	a	construct	corresponding	to	an	array	expression,	an	operation	expression	or	a	
transformer	expression.	The	second	mode	is	only	used	when	it	is	being	called	from	Nial	using	
the	basic	operation	parse.	
	
Each	recursive-descent	routine	is	passed	a	pointer	to	a	variable	in	which	it	stores	the	parse	
tree	that	it	constructs.	The	calling	routine	then	uses	the	variable	to	access	the	tree	and	embed	
it	in	the	result	the	caller	is	creating.	
	
The	shift-reduce	part	is	driven	by	the	routine	formfinder().	The	task	of	this	routine	is	to	look	
for	one	of	the	three	kinds	of	expressions	and	return	with	the	kind	it	has	found.	The	parser	
uses	a	stack	to	hold	intermediate	results	as	it	is	parsing	in	shift-reduce	mode.	
	
All	the	parser	routines	return	a	SUCCESS,	FAIL,	or	ERROR	code.	On	ERROR,	the	routine	that	
found	the	error	places	an	error	fault	on	the	Nial	stack	and	all	routines	higher	up	in	the	calling	
sequence	return	with	ERROR.	On	FAIL,	the	called	routine	cleans	up	to	its	point	of	call,	
restoring	tokens	if	necessary	by	backing	up	the	nexttoken	indicator.	The	calling	routine	
decides	whether	to	try	an	alternative	construct,	to	return	an	ERROR,	or	to	FAIL	itself.	
	
The	token	stream	is	global	to	the	parse	routines.	The	routine	accept1()	is	used	to	accept	a	
token	and	move	the	token	indicator	to	the	next	token.	
	
The	parse	trees	are	constructed	as	tagged	nodes,	with	each	form	of	language	construct	having	
its	corresponding	node	form.	The	details	of	the	nodes	are	hidden	in	node	builders	(in	blders.c,	



blders.h)	and	field	selectors	(in	getters.h).	New	nodes	are	easily	added	to	accommodate	an	
extension	to	the	language.	
	
	
5.	The	Evaluator	
	
Every	Nial	expression	denotes	either:	
				-	an	array	value,	
				-	an	operation,	or	
				-	a	transformer.	
	
				The	array	expressions	include:	
				constants	
				variables	
				basic	named-expressions	
				user-defined	named-expressions	
				list	constructs	
				control	constructs	
				blocks	
				assignments	
				operation	applications	
				definitions	
	
				The	operation	expressions	include:	
				basic	named	operations	
				user-defined	named	operations	
				operation	compositions	
				atlases		e.g.	[f,g,h]	
				opforms	e.g.	(op	a	(a+1))	
				curried	operations	e.g.	1+	
				transforms	e.g.	EACH	rest	
	
				The	transformer	expressions	include:	
				basic	named	transformers	
				user	renamings	of	transformers	
				user-defined	named	trforms	e.g.	TWICE	is	tr	f	(f	f)	
	
For	each	class	of	semantic	object	there	is	one	routine	in	the	evaluator	that		
handles	it:	
				array	expressions			 -		eval(exp)	
				operation	expressions		 -		apply(op)	
				transformer	expressions		 -		apply_transform(tr)	
					
These	are	the	three	major	routines	of	the	evaluator.	They	take	as	their	argument	a	parameter	
corresponding	to	the	code	they	are	to	evaluate.	They	assume	that	a	code	argument	is	
"permanent"	,i.e.	it	is	owned	in	some	component	of	a	program	text.	Hence	these	routines	do	



not	need	to	free	up	such	an	argument.	Accordingly,	routines	that	create	temporary	code	
objects	(some	cases	in	apply_transform	and	some	primitive	transformers)	are	responsible	for	
cleaning	up	such	objects.	
	
	
The	evaluator	is	stack-based.	The	stack	handling	is	as	follows:	
	

eval(exp)				 leaves	its	result	on	the	stack.	
apply(op)				 takes	the	array	argument	on	the	stack	and	leaves	the	result	on	the	stack.	

It	frees	up	the	argumentif	it	is	temporary.	
	 	 		

applytr(tr)			 takes	the	array	argument	on	the	stack	(topm1)	and	the	operation	
argument	on	the	stack	(top).		It	leaves	the		result	on	the	stack.	It	frees	up	
the	argument	if	it	is	temporary.	It	does	not	free	up	the	operation	
argument	since	it	is	assumed	to	be	permanent	code;	if	it	is	temporary,	
then	the	routine	that	built	it	must	clean	it	up.	

	 	 		
Each	of	the	routines	is	driven	by	a	case	switch	with	the	semantics	of	evaluation	for	each	node	
encoded	in	the	section	of	code	selected	by	the	node's	tag.	
	
The	stack	is	used	to	hold	other	information	as	well.	Blocks,	opforms	and	trforms	all	define	
local	scopes.	When	one	of	these	is	entered	an	activation	record	is	placed	on	the	stack	which	
holds	the	backpointer	to	the	previous	one	for	this	scope	(-1	if	there	isn't	one)	and	the	value	
cells	for	the	local	names.	The	routine	prologue	sets	up	an	activation	record	and	epilogue	
discards	it.	
	
In	order	to	get	the	proper	semantics	for	trforms,	their	operation	argument	must	be	"closed	
with	its	environment".	This	means	that	the	pointers	to	all	local	scopes	must	be	saved.	When	a	
closure	is	applied	the	stack	is	used	to	hold	the	current	stack	pointers	while	the	ones	bundled	
with	the	operation	are	installed.	The	routines	setup_env	and	restore_env	are	used	to	set	up	for	
a	closure	application	and	to	clean	up	after	it.	
	
The	evaluator	is	complicated	by	the	fact	that	the	user	debugging	capability	is	intertwined	
with	the	semantic	actions.	In	order	to	make	the	interpreter	more	efficient	for	production	use,	
two	versions	of	eval()	are	created.	When	user	debugging	is	enabled	the	slower	version	is	run;	
when	user	debugging	is	off	the	version	with	the	debugging	code	removed	is	run.	To	support	
this	double	construction	of	the	eval()	routine,	it	is	stored	in	the	file	eval_fun.c	and	included	
twice	with	different	switch	settings.	
	
The	interface	between	the	evaluator	and	the	basic	routines,	which	behave	as	abstract	
machine	instructions,	is	done	through	a	pair	of	dispatch	tables	and	an	initialization	routine	
stored	in	basics.c.	The	initialization	routine	adds	symbols	and	dispatch	table	indices	to	the	
global	symbol	table	for	each	basic	routine.	During	evaluation,	when	a	parse	tree	node	
corresponding	to	a	basic	routine	is	encountered	its	index	is	selected	and	the	dispatch	table	is	
used	to	do	a	call	on	the	corresponding	routine.	The	initalizer	and	the	dispatch	tables	are	kept	
in	synchronization	by	generating	them	using	the	Nial	package	builder	program.		



6.	The	Symbol	Table	Mechanism	
	
The	symbol	table	mechanism	supports	a	collection	of	binary	trees,	one	for	each	separate	
naming	scope	created	in	the	workspace.	The	initial	environment	consists	of	a	single	binary	
tree	containing	the	reserved	words	and	the	names	of	the	predefined	arrays,	operations	and	
transformers.	This	binary	tree	is	called	the	global_symtab	and	every	environment	has	access	
to	it.	As	the	user	defines	objects	and	does	assignments	the	global_symtab	grows.	
	
A	separate	binary	tree	is	created	for	every	naming	scope	as	they	are	encountered	by	the	
parser.	At	all	times	current_env	contains	the	list	of	symbol	tables	that	form	the	static	nesting	
of	environments.	The	global	and	system	symbol	tables	are	held	separately	to	reduce	
overhead.	The	current	environment	for	each	construct	that	defines	a	new	symbol	table	is	
saved	in	the	parse	tree	entry	for	the	construct	so	that	it	can	be	reestablished	at	runtime	in	
order	to	support	dynamic	symbol	lookup	as	required	by	the	semantics	of	execute	and	other	
evaluation	operations.	
	
A	symbol	table	is	a	triple	consisting	of	a	root,	a	current	stack	pointer	and	a	property.	It	is	
referenced	by	the	index	of	where	it	is	stored	in	the	list	of	symbol	tables.	The	property	of	a	
symbol	table	is	either	global,	parameter,	open	or	closed.	The	local	symbol	table	of	an	operation	
form	whose	body	is	a	block	is	closed	otherwise	it	is	open.		An	opform	with	its	body	in	"("	and	
")"	is	open,	but	if	it	uses	"{"	and	"}"	then	it	is	closed.	The	symbol	table	of	a	block	is	closed.	The	
open	vs	closed	information	is	used	to	enforce	the	static	nesting	rules.	The	symbol	table	of	a	
transformer	form	is	of	type	parameter.			The	global	symbol	table	is	of	type	global.	
	
The	stack	pointer	of	a	symbol	table	points	to	the	current	activation	record	associated	with	
that	symbol	table	if	any.	The	global	symbol	table	does	not	have	an	activation	record	since	its	
value	cells	are	in	the	symbol	table	entries.	For	other	symbol	tables	the	corresponding	field	in	
an	entry	holds	the	offset	to	the	value	cell	in	the	activation	record.	
	
	
Each	symbol	table	entry	has	6	fields:	
	
			   +------+------+------+-------+-------+------+ 
    | name | role | value | left | right | flag | 
    +------+------+------+-------+-------+------+	
	
					 name	 	 The	print	value	of	the	symbol	stored	as	a	phrase	(in	upper	case).	
	
					 role	 	 The	semantic	meaning	of	the	name.	Either	reserved,	identifier,	variable,	
	 	 	 expression,	operation,	or	transformer.	
	
					 value	 	 The	value	of	the	object	if	the	system	or	global	symtab.	For	a		variable	it	is	
	 	 	 the	array	value,	for	an	expression,	operation	or	transformer	it	is	the		
	 	 	 parse	tree	that	represents	it.	For	a	local	symtab	this	contains	the	offset	
	 	 	 for	the	symbol	in	a	local	area	on	the	stack.	
	



					 left		 	 The	left	child	of	the	node	in	the	binary	tree.	
	
					 right	 	 The	right	child	of	the	node	in	the	binary	tree.	
	
					 flag		 	 Used	for	global	symbols	to	indicate	whether	the	symbol	is	system	or		
	 	 	 user	defined.	
	 				
In	addition	two	debugging	flags	are	inserted	into	the	role	field	for	symbol	table	entries	
corresponding	to	user	defined	program	objects.	
	 				
				 	trflag			 This	is	patched	into	the	role	field	to	indicate	that	the	object	should	be		
	 	 	 traced	during	evaluation.	
	
					 brflag			 This	is	also	patched	into	the	role	field	to	indicate	that	a	break	should	be	
	 	 	 raised	when	the	object	starts	evaluation.	
	
The	symbol	table	entry	could	be	compressed	to	5	fields	by	combining	the	role,	the	system	flag	
and	the	debugging	flags	into	one	word,	but	no	space	would	be	saved	due	to	heap	blocks	being	
of	even	size.	
	
A	symbol	table	has	three	fields:	

- the	root	of	the	binary	tree,		
- a	pointer	to	the	current	activation	record	in	the	stack	for	local	environments,	and	
- a	property	field	that	indicates	whether	it	is	global	or	local	and	if	local	whether	it	is	

open,	closed	or	a	parameter	table.	
	 	 	
The	main	routines	in	the	symbol	table	module	are:	
	 MkSymtabEntry	 creates	a	symbol	table	entry	
	 erase	 	 	 removes	a	symbol	table	entry	
	 lookup		 	 returns	the	symbol	table	index	and	the	entry	address.	
	 	 	 	
The	lookup	routine	searches	the	symbol	tables	in	an	order	to	support	local	scope	rules.	It	has	
a	parameter	searchtype	that	was	used	to	control	the	order	of	search.	
	
When	a	symbol	table	entry	is	stored	in	a	parse	tree	node,	the	component	is	stored	as	an	
integer	and	not	an	array	reference.	This	is	necessary	to	break	the	circularity	of	array	
references	for	recursive	definitions.	The	array	operations	of	Nial	assume	that	all	arrays	are	
represented	as	trees.	The	inclusion	of	a	circular	reference	would	make	some	internal	routines	
loop	indefinitely.	
	
	
	



7.	Workspace	Management	
	
The	file	wsmanage.c	has	the	routines	that	load	and	store	workspaces	to	the	file	system	and	
also	the	routine,	loaddefs,	which	loads	and	executes	a	Nial	definition	file	(.ndf).	
	
The	workspace	is	dumped	in	3	segments:	
	 -	a	struct	of	C	values	that	reference	the	workspace	
	 -	the	atom	table	
	 -	the	allocated	blocks	in	the	heap.	
	
The	Nial	stack	and	the	C	buffer	parts	of	the	abstract	machine	do	not	need	to	be	saved.	The	
allocated	blocks	are	grouped	into	contiguous	chunks,	each	of	which	is	written	with	one	
writeblock	call.	
	
Since	all	internal	heap	references	are	offsets	to	the	beginning	of	the	array	mem[],	there	is	no	
need	to	scan	the	heap	blocks	on	either	writing	or	reading	them.	The	decision	not	to	store	hard	
C	pointers	in	the	heap	is	a	good	one	in	that	it	has	made	workspace	file	management	easier.	
	
A	workspace	save	or	load	is	always	done	at	the	top	level.	This	is	necessitated		
by	the	fact	that	computation	cannot	be	resumed	at	an	arbitrary	point	in	the	C	program	since	
the	C	stack	cannot	be	reinitialized	and	control	given	to	the	point	of	interruption.	
	
	
8.	File	Access	
	
The	file	fileio.c	supports	the	file	access	mechanisms	of	Nial.	These	include	i/o	to	stdin	and	
stdout,	sequential	file	access	using	the	Nial	operations	readfile	and	writefile,	the	random	
access	mechanisms	of	the	Nial	component	file	system	for	direct	access	(2	kinds),	and	routines	
for	direct	access	to	POSIX	style	files.	
	
Most	of	the	file	routines	assume	that	the	file	is	open	and	that	a	file	handle	has	been	assigned.	
The	file	handles	are	managed	in	a	C	table	of	fixed	size.	(This	is	a	limitation	we	may	want	to	
remove.	For	some	OS's	it	is	safe	as	long	as	the	default	size	is	larger	than	the	number	of	
allowable	open	files.)	
	
For	Nial	direct	access	files,	two	host	files	are	needed:	one	for	the	data	file	and	one	for	an	index	
file.	The	Nial	name	is	given	without	a	suffix,	and	the	host	names	have	.rec	and	.ndx	as	the	
suffices.	
	
The	iopen()	routine	is	used	to	open	files	in	one	of	the	following	modes:	
	 "r	 read	only	mode	for	sequential	files	
	 "w	 write	mode	for	sequential	files	
	 "a	 write	mode	for	sequential	files	starting	at	current	end		
	 "d	 direct	access	mode	
	 "c	 communications	mode	(allows	read	and	write)	



	 	
The	POSIX	style	file	access	routines	take	a	file	name	argument	and	do	the	open	and	close	
internally.	
	
The	Nial	direct	access	files	are	in	two	flavours:	ones	with	items	that	are	Nial	strings	treated	as	
arbitrary	byte	arrays,	and	ones	with	items	that	are	representations	of	Nial	arrays.		
	
A	direct	access	file	has	an	index	file	(.ndx)	that	contains	some	global	information	on	the	file	
and	a	2	word	field	for	each	record	up	to	the	highest	index	used.	The	2	words	are	byte	position	
and	byte	length.	
	
The	data	file	for	a	direct	access	file	(.rec)	is	an	uninterpreted	sequence	of	bytes.	The	data	is	
stored	in	the	order	written.	Updates	are	put	in	place	if	they	will	fit;	otherwise	they	are	placed	
at	the	end	of	the	file.	A	count	of	unused	space	is	kept	in	the	global	information.	If	the	space	
wastage	becomes	too	high	the	.rec	file	is	compressed	automatically.	
	
While	care	has	been	taken	in	writing	the	direct	access	package,	it	is	not	as	robust	as	
professional	database	packages	in	handling	error	conditions.	It	has	proven	adequate	for	
prototyping	and	small	applications,	but	it	is	not	intended	for	a	large-scal	application	that	
depends	on	the	direct	access	code	as	a	central	feature.		
	 	
	
9.	The	Operating	System	Interface	
	
In	Version	7	of	Q'Nial	the	interface	to	the	operation	system	has	been	simplified	since	we	are	
assuming	that	the	operating	system	is	a	variant	of	Unix.	Currently,	we	are	building	the	sysem	
under	Linux	and	Mac	OSX.	The	operating	system	interface	routine	is	unixif.c.	It	provide	
support	for	the	following	functionality:	
	 -	signal	handling	for	floating	point	exceptions,	Ctrl	C,	etc.	
	 -	routines	for	cpu	time	and	date	handling	
	 -	file	handling	support	(open,	close,	seek)	
	 -	routines	for	sequential	i/o	of	an	arbitrary	size	
	 -	routines	for	block	i/o	of	an	arbitrary	size	
	 -	routine	to	call	the	command	interface	for	UNIX	
	 -	routine	to	call	an	editor	that	can	be	specified	
	 -	routine	to	initialize	the	NIALROOT	path	
	 	
The	file	handling	approach	is	based	on	the	buffered	versions	of	the	UNIX	runtime	routines.		
	
	



10.	The	Top	Level	Routine	in	V7	Q'Nial	
	
The	file	main_stu,c	is	the	main	control	routine	for	the	interpreter.	It's	job	is	to:	

- set	the	initial	values	for	global	variables	
- process	the	command	line	input	
- initialize	the	interpreter	
- provides	support	for	the	longjmp	behaviour	during	startup	
- if	starting	with	a	named	workspace,	load	it	otherwise	create	a	clear	workspace.	
- provides	support	for	the	longjmp	behaviour	during	Nial	computations	
- initialize	the	file	system	
- execute	a	Latent	expression	if	found	in	the	workspace	
- load	a	definitions	file	if	requested	using	loaddefs()	
- if	interactive	execution	requested	enter	the	top	level	loop	
- after	execution	via	Latent	or	interaction	do	cleanup	and	exit	

  
 
The	top	level	loop	interacts	with	the	user	with	the	sequence:	
	 -	prompt	
	 -	read	a	line	of	input	
	 -	execute	it,	using	scan(),	parse(),	eval()	
	 -	compute	the	picture	of	the	result	using	picture()	
	 -	display	the	result	using	show()	
	
The	loop	is	interrupted	if	Bye	is	executed	or	the	user	types	Ctrl-C.	
	
All	interrupts	caused	by	the	user,	due	to	faults,	or	programmed	ones	result	in	a	long	jump	to	
the	main	loop	routine	to	code	that	cleans	up	intermediate	data	and	restarts	the	loop.	
	
Errors	or	interruptions	that	arise	during	execution	are	handled	in	two	ways:	Either	they	call	
the	routine	exit_cover(),	which	does	the	amount	of	cleanup	necessary	for	the	class	of	error,	or	
they	long	jump	directly	following	the	set_jmp()	call	in	main_stu.c.	The	routine	exit_cover()	also	
long	jumps	to	main_stu.c	after	doing	its	cleanup	work.	If	the	interruption	occurs	in	
initialization	it	goes	to	the	first	set_jmp()	call.	If	during	the	interactive	loop	it	goes	to	the	
second	one.	
	
The	return	code	provided	to	set_jmp()	indicates	what	kind	of	situation	caused	the	
interruption.	The	details	of	this	process	are	quite	subtle.	We	do	not	permit	exit_cover()	to	
recur	since	it	could	easily	result	in	an	infinite	loop.		
	
Another	complicating	factor	is	that	load	and	save	have	to	be	executed	at	top	level.	They	result	
in	an	interruption	that	in	the	case	of	load	looks	for	a	Latent	expression	that	can	be	used	to	
restart	the	computation.	
	



11.	Coding	Conventions	
	
A	standard	style	has	been	used	for	the	modules	of	the	Q'Nial	interpreter.	The	interpreter	is	
viewed	as	a	collection	of	modules	in	the	software	engineering	sense.	C	does	not	directly	
support	modules;	however,	by	following	the	organizational	guidelines	provided	below,	most	
of	the	advantages	of	modules	can	be	achieved.	
	
Each	module	consists	of	a	code	file	.c	and	a	corresponding	header	file	.h	.	A	module	is	a	
collection	of	related	routines.	The	routines	are	grouped	to	minimize	the	number	of	cross	
module	linkages	by	either	routine	calls	or	shared	global	variables.	Minimize	is	used	
informally	here,	as	no	formal	tools	have	been	used	to	achieve	the	modularization.	
	
The	code	file	consists	of	both	local	and	exported	routines,	and	local	and	exported	global	
variables.	A	local	routine	or	variable	is	declared	to	be	static	and	if	it	is	a	routine	its	prototype	
is	provided	near	the	top	of	the	file.	The	exported	routines	and	global	variables	are	described	
in	the	header	file	for	the	module	using	an	extern	declaration	for	variables	and	a	prototype	for	
the	routines.	Evrey	code	file	for	a	module	include	its	header	file	to	ensure	that	the	prototype	
does	not	conflict	with	the	actual	definition.	
	
The	header	files	are	also	used	to	define	constants	and	pre-processor	macros	that	can	be	used	
either	within	the	code	file,	or	by	other	modules	that	need	them	to	use	the	routines	exported	
from	the	module.	
	
Most	of	the	modules	are	organized	as	follows:	
	 Copyright	comment	
	 include	of	"switches.h"	
	 include	of	C	libraries	needed	in	th	emodule	
	 include	of	other	Q'Nial	modules	headers	as	needed	
	 declaration	of	prototypes	for	static	routines	
	 global	variables,	declared	static	or	not	
	 the	routines	of	the	module	
	 	
If	the	module	is	optionally	included	by	the	package	builder,	described	below,	there	is	an	
enclosing	#ifdef		<feature	name>	#endif	pair	after	the	include	of	"switches.h"	that	eliminates	
the	module's	code	if	the	package	is	not	selected	by	the	package	builder.	
	
Most	of	the	modules	also	include	a	fair	number	of	header	files	for	other	modules.	These	
correspond	to	module	dependencies.	Most	of	the	modules	require	the	header	files:	
	 qniallim.h	 -	size	limitations	
	 lib_main.h	 -	the	global	struct	G,	and	other	globals	
	 absmach.h	 -	for	the	abstract	machine	model	
	 if.h	 	 -	for	the	host	system	interface	
	
When	other	modules	are	needed,	we	have	indicates	in	comments	why	they	are	required	so	
that	subsequent	shifts	of	code	may	be	considered	to	reduce	cross-module	dependency.	



12.	Writing	new	basic	expressions,	operations,	or	transformers	
	
This	section	describes	how	to	add	new	basic	capabilities	to	Nial	by	writing	the	C	code	to	
execute	the	semantics	of	basic	expressions,	operations	or	transformers.		Adding	new	basic	
capaibilities	in	V7	Nial	is	done	by	adding	a	module	that	can	be	included	using	the	pkgblder	
described	in	the	next	chapter.	
	
First	we	describe	the	form	that	basic	routines	must	take	and	give	an	example	with	some	
explanation.		
	
A	basic	routine	is	always	of	the	form	
	
void i<name> () { 
   ... code to generate the result  ... 
   apush(result); 
} 
	
where	<name>	is	the	Nial	name	of	the	basic	capability.	
	
If	it	is	a	basic	expression,	then	there	is	no	argument	provided	on	the	stack.	If	it	is	a	basic	
operation,	then	there	will	be	an	argument	on	the	stack.	This	is	retrieved	by	a	call	to	apop()	
and	must	be	freed	after	computing	and	pushing	the	result.	
	
void i<name> () { 
   nialptr x = apop(); 
   ... code to generate the result using x ... 
   apush(result); 
   freeup(x); 
} 
	
If	it	is	a	basic	transformer,	then	there	will	be	a	function	argument	as	well	a	value	argument	on	
the	stack.	They	are	retrieved	using	apop().	The	value	argument	must	be	freed	after	
computing	and	pushing	the	result.	The	function	argument	is	never	temporary	and	so	does	not	
need	to	be	freed.	
	
void i<name> () { 
   nialptr x = apop(), 
           f = apop(); 
   ... code to generate the result using x and applying f  ... 
   apush(result); 
   freeup(x); 
} 
	
The	result	can	be	computed	by	applying	other	basic	capabilities,	or	by	allocating	
a	result	container	and	filling	it.	An	example	of	the	first	method	is:		
	
	 	 foo	is	op	a	{	first	rest	a	}	
	



which	can	be	implemented	by:	
	
void ifoo () 
{ irest(); 
  ifirst(); 
}	
			
There	is	very	little	gain	in	efficiency	by	implementing	foo()	at	the	C	level	compared	to	using	
the	Nial	definition.	
	
Consider	the	operation	rotate	defined	in	defs.ndf	by:	
	
rotate	IS	OPERATION	N	A	{	
				Ta	:=	tally	A;	
				shape	A	reshape	(Ta	+	N	+	tell	Ta	mod	Ta	choose	list	A)	
}	
	
A	basic	version	of	it	written	in	C	can	be	implemented	by:	
	
void irotate() 
{ nialptr x,z,a,b; 
  int vb; 
  nialint tb,n,m,j; 
  x=apop();    /* x is the argument */ 
  /* check that x is a pair */ 
  if (tally(x)!=2) 
  { apush(makefault("?rotate expects a pair")); 
    freeup(x); 
    return; 
  } 
  /* get the items of x and store them in a and b */ 
  splitfb(x,&a,&b); 
  /* check that a is an integer */ 
  if (!atomic(a) || kind(a)!=inttype) 
  { apush(makefault("?first arg of rotate must be an integer")); 
    freeup(x); 
    return; 
  } 
  n = intval(a); /* get the C value of the integer */ 
  /* create the result container z of the same kind and shape as b */ 
  vb = valence(b); 
  z = new_create_array(kind(b),vb,0,shpptr(b,vb)); 
  /* do the rotate as two copies */ 
  tb = tally(b); 
  /* compute j, the position in b where first item of z is selected*/ 
  j = (n + tb) % tb;  
  m = tb - j;  /* length of first move */ 
  copy(z,0,b,j,m); /* copy the first piece of length m */ 
  copy(z,m,b,0,j); /* copy the second piece of length j */ 
  apush(z); /* push the result */ 



  if (kind(x)!=atype) 
     /* if x is homogeneous, then a and b are temporary */ 
    { freeup(a); freeup(b);} 
  freeup(x); /* freeup the argument */ 
}	
	
The	above	example	illustrates	a	number	of	key	concepts.	
	
1.	The	argument	of	the	operation	must	be	checked	to	ensure	it	has	the	correct	structure.	In	
this	case	the	argument	must	be	a	pair	with	the	first	item	being	an	integer.		The	following	
support	functions	are	used	in	testing	the	argument:	
					apop()	-	pop	an	array	value	from	the	stack	
					tally()		-	returns	the	number	of	items	in	the	array	argument	
					makefault()	-	generates	a	fault	object	from	its	string	argument	
					splitfb()	-	used	to	extract	the	items	from	a	pair	
					kind()	-	returns	the	storage	kind	for	the	object	
					atomic()	-	indicates	if	the	object	is	an	atom	
	
2.	We	must	extract	the	data	inside	a	Nial	object	to	operate	on	by	C.	Here	we	get	the	rotation	
amount	from	array	a	using:	
					intval()	-	returns	the	integer	stored	in	a	Nial	atom	of	kind	inttype.	
	
3.	The	result	container	is	allocated	using:	
					new_create_array(k,v,0,sh)	-	creates	a	container	for	an	array	of	kind	k,	
	 valence	v,	and	shape	sh	
					valence()	-	valence	of	the	object	
					shpptr(x,v)	-	C	pointer	to	int	for	the	shape	vector	of	x	of	valence	v	
	
4.	The	result	container,	z	could	have	been	filled	by	a	loop	that	selects	items	from	b	and	places	
them	in	z	one	at	a	time.	However,	since	except	at	the	wrap	around	boundary,	adjacent	
positions	are	moved	to	adjacent	positions.	This	suggests	the	faster	technique	of	doing	two	
copies	using		
					copy(dest,dstart,src,sstart,cnt)	-	copies	cnt	items	from	src	to	dest	using	the	two	starting			
	 positions	
		
5.	The	result	container,	z	is	pushed	on	the	stack	and	the	argument	is	freed	in	case	it	is	a	
temporary.	Note	that	the	act	of	extracting	a	and	b	from	x	by	splitfb	can	create	temporaries	if	x	
is	not	of	storage	class	atype.	
						apush()		-	put	array	onto	the	stack	
						freeup()		-	test	if	the	argument	has	refcnt==0,	if	so	free	its	storage	
	
Every	basic	operation	is	assumed	to	consume	its	argument	if	it	is	temporary.	Thus,	you	must	
free	up	the	argument	at	the	end	of	the	basic	operation	unless	you	have	used	it	in	a	call	to	
another	basic	operation.	Note	that	if	you	still	need	the	argument	after	calling	another	basic	
operation,	you	must	protect	it	during	a	primitive	call	as	follows:	
	



										apush(x); /* to protect x */ 
    apush(x); /* x is arg to ishape */ 
    ishape(); 
    shx = apop(); 
    apop();  /* to unprotect x */ 
	
There	are	many	other	support	routines	available	in	absmach.c.	They	are	either	routines	or	
macros	as	indicated	in	the	absmach.h	file.		These	include	routines:	
	 					to	fetch	and	store	to	arrays	of	the	various	storage	kinds,		
					explode()	to	convert	a	homogeneous	array	to	an	atype	one,		
					implode()	to	do	the	opposite,		
					type	testing	routines,	and	
					additional	stack	support	routines.		
	
Examples	of	their	use	can	be	found	be	examining	the	primitive	routines	provided	with	Q'Nial.	
	
13.	Building	the	executable	
	
The	GitHub	repository,	QNial7	provides	executable	nial		binaries	for	several	platforms.	
See	its	README.md	file	for	details	on	how	to	set	one	up	for	use	on	your	system.	It	also	
provides	two	directories	BuildCore	and	BuildNial	that	are	used	to	create	an	executable	binary	
on	a	different	platform	or	to	build	an	executable	nial	with	a	different	choice	of	features.	
	
If	you	want	to	create	an	executable	on	an	unsupported	platform,	then	you	use	BuildCore	to	
create	a	core	version	called	nialcore.	After	creating	it,	you	copy	it	to	BuildNial.	The	
README.md	files	in	each	directory	give	the	details	of	how	to	build	the	desired	executable.	
	
For	a	new	platform,	you	use	nialcore	to	build	a	basic	version,	nial_basic	that	adds	definitions	
written	in	Nial	to	the	core,	and	then	use	nial_basic	to	build	a	package	that	contains	the	
features	you	want	to	add	to	the	core.	The	Nial	script	addfeatures.ndf		is	used	to	gather	the	
source	files	needed	for	the	build	and	to	generate	a	CmakeLists.txt	that	is	used	by	CMake	in	the	
build.	If	you	want	to	build	an	executable	nial	with	a	different	choice	of	features	you	can	use	
the	provided	nial		with	addfeatures.ndf		to	build	a	package	that	has	the	features	that	you	want.	
See	the	README.md	in	BuildNial	for	details.	
	
The	pkgblder	directory	and	the	addfeatures.ndf		Nial	script	have	been	designed	to	make	it	
straightforward	to	add	new	features	to	QNial7.	The	term	feature		is	used	in	this	context	to	
describe	an	extension	to	the	Nial	interpreter	that	involves	the	addition	of	one	or	more	new	
primitive	functions	each	of	which	may	be	a	basic	expression,	a	basic	operation,	or	a	basic		
transformer.		The	new	primitives	are	implemented	in	C	following	the	instruction	give	in	
Chapter	11	above.	The	implementation	may	involve	one	or	more	C	source	files	and	any	
corresponding	header	files	they	require.	A	feature	may	also	add	additional	functionality	in	the	
form	of	Nial	definitions	that	are	installed	at	startup	of	the	executable.		The	README.md	in	
BuildHelp	has	the	details.	
	
	


